ARTH TASK 1
Write a blog/Article on any Blogging site (Eg LinkedIn, Medium) that how big MNC’s like Google, Facebook, Instagram etc stores, manages and manipulate Thousands of Terabytes of data with High Speed and High Efficiency.
What Is Big Data?
The term “big data” refers to data that is so large, fast or complex that it’s difficult or impossible to process using traditional methods. The act of accessing and storing large amounts of information for analytics has been around a long time. But the concept of big data gained momentum in the early 2000s when industry analyst Doug Laney articulated the now-mainstream definition of big data as the three V’s:
Volume: Organizations collect data from a variety of sources, including business transactions, smart (IoT) devices, industrial equipment, videos, social media and more. In the past, storing it would have been a problem — but cheaper storage on platforms like data lakes and Hadoop have eased the burden.
Velocity: With the growth in the Internet of Things, data streams in to businesses at an unprecedented speed and must be handled in a timely manner. RFID tags, sensors and smart meters are driving the need to deal with these torrents of data in near-real time.
Variety: Data comes in all types of formats — from structured, numeric data in traditional databases to unstructured text documents, emails, videos, audios, stock ticker data and financial transactions.
At SAS, we consider two additional dimensions when it comes to big data:
Variability:
In addition to the increasing velocities and varieties of data, data flows are unpredictable — changing often and varying greatly. It’s challenging, but businesses need to know when something is trending in social media, and how to manage daily, seasonal and event-triggered peak data loads.
Veracity:
Veracity refers to the quality of data. Because data comes from so many different sources, it’s difficult to link, match, cleanse and transform data across systems. Businesses need to connect and correlate relationships, hierarchies and multiple data linkages. Otherwise, their data can quickly spiral out of control.
Why Is Big Data Important?
The importance of big data doesn’t revolve around how much data you have, but what you do with it. You can take data from any source and analyze it to find answers that enable 1) cost reductions, 2) time reductions, 3) new product development and optimized offerings, and 4) smart decision making. When you combine big data with high-powered analytics, you can accomplish business-related tasks such as:
- Determining root causes of failures, issues and defects in near-real time.
- Generating coupons at the point of sale based on the customer’s buying habits.
- Recalculating entire risk portfolios in minutes.
- Detecting fraudulent behavior before it affects your organization.
Who’s focusing on big data?
Big data is a big deal for industries. The onslaught of IoT and other connected devices has created a massive uptick in the amount of information organizations collect, manage and analyze. Along with big data comes the potential to unlock big insights — for every industry, large to small.
What Big Data Analytics Challenges Business Enterprises Face Today
1. Need For Synchronization Across Disparate Data Sources
As data sets are becoming bigger and more diverse, there is a big challenge to incorporate them into an analytical platform. If this is overlooked, it will create gaps and lead to wrong messages and insights.
2. Acute Shortage Of Professionals Who Understand Big Data Analysis
The analysis of data is important to make this voluminous amount of data being produced in every minute, useful. With the exponential rise of data, a huge demand for big data scientists and Big Data analysts has been created in the market. It is important for business organizations to hire a data scientist having skills that are varied as the job of a data scientist is multidisciplinary. Another major challenge faced by businesses is the shortage of professionals who understand Big Data analysis. There is a sharp shortage of data scientists in comparison to the massive amount of data being produced.
3. Getting Meaningful Insights Through The Use Of Big Data Analytics
It is imperative for business organizations to gain important insights from Big Data analytics, and also it is important that only the relevant department has access to this information. A big challenge faced by the companies in the Big Data analytics is mending this wide gap in an effective manner.
4. Getting Voluminous Data Into The Big Data Platform
It is hardly surprising that data is growing with every passing day. This simply indicates that business organizations need to handle a large amount of data on daily basis. The amount and variety of data available these days can overwhelm any data engineer and that is why it is considered vital to make data accessibility easy and convenient for brand owners and managers.
5. Uncertainty Of Data Management Landscape
With the rise of Big Data, new technologies and companies are being developed every day. However, a big challenge faced by the companies in the Big Data analytics is to find out which technology will be best suited to them without the introduction of new problems and potential risks.
6. Data Storage And Quality
Business organizations are growing at a rapid pace. With the tremendous growth of the companies and large business organizations, increases the amount of data produced. The storage of this massive amount of data is becoming a real challenge for everyone. Popular data storage options like data lakes/ warehouses are commonly used to gather and store large quantities of unstructured and structured data in its native format. The real problem arises when a data lakes/ warehouse try to combine unstructured and inconsistent data from diverse sources, it encounters errors. Missing data, inconsistent data, logic conflicts, and duplicates data all result in data quality challenges.
7. Security And Privacy Of Data
Once business enterprises discover how to use Big Data, it brings them a wide range of possibilities and opportunities. However, it also involves the potential risks associated with big data when it comes to the privacy and the security of the data. The Big Data tools used for analysis and storage utilizes the data disparate sources. This eventually leads to a high risk of exposure of the data, making it vulnerable. Thus, the rise of voluminous amount of data increases privacy and security concerns.
To overcome these Big Data challenges in the companies and large organizations, a corporate training program in Big Data should be organized by the business owners and managers.
USE CASE UBER:-
Uber is committed to delivering safer and more reliable transportation across our global markets. To accomplish this, Uber relies heavily on making data-driven decisions at every level, from forecasting rider demand during high traffic events to identifying and addressing bottlenecks in our driver-partner sign-up process. Over time, the need for more insights has resulted in over 100 petabytes of analytical data that needs to be cleaned, stored, and served with minimum latency through our Hadoop-based Big Data platform. Since 2014, we have worked to develop a Big Data solution that ensures data reliability, scalability, and ease-of-use, and are now focusing on increasing our platform’s speed and efficiency.
In this article, we dive into Uber’s Hadoop platform journey and discuss what we are building next to expand this rich and complex ecosystem
The arrival of Hadoop
To address these limitations, we re-architected our Big Data platform around the Hadoop ecosystem. More specifically, we introduced a Hadoop data lake where all raw data was ingested from different online data stores only once and with no transformation during ingestion. This design shift significantly lowered the pressure on our online datastores and allowed us to transition from ad hoc ingestion jobs to a scalable ingestion platform. In order for users to access data in Hadoop, we introduced Presto to enable interactive ad hoc user queries, Apache Spark to facilitate programmatic access to raw data (in both SQL and non-SQL formats), and Apache Hive to serve as the workhorse for extremely large queries. These different query engines allowed users to use the tools that best addressed their needs, making our platform more flexible and accessible.
To keep the platform scalable, we ensured all data modeling and transformation only happened in Hadoop, enabling fast backfilling and recovery when issues arose. Only the most critical modeled tables (i.e., those leveraged by city operators in real time to run pure, quick SQL queries) were transferred to our data warehouse. This significantly lowered the operational cost of running a huge data warehouse while also directing users to Hadoop based query engines that were designed with their specific needs in mind.
We also leveraged the standard columnar file format of Apache Parquet, resulting in storage savings given the improved compression ratio and compute resource gains given the columnar access for serving analytical queries. Moreover, Parquet’s seamless integration with Apache Spark made this solution a popular choice for accessing Hadoop data. Figure 3, below, summarizes the architecture of our second generation Big Data platform.